1 4.14 ENERGY AND MINERAL RESOURCES

- 2 This section describes energy and mineral resources such as natural gas, oil, and sand
- 3 and gravel in the vicinity of the proposed Project and evaluates the impacts that the
- 4 Project and its Alternatives may have on these resources.
- 5 The analysis focuses upon area energy and mineral resources that could be affected by
- 6 the construction and operation of primary Project components, including the
- 7 construction and operation of Wells 421-1 and 421-2. This analysis also briefly
- 8 discusses area resources that could be affected by the operation of secondary Project
- 9 components (existing facilities not proposed for modification) such as the operation of
- the EMT. For a full discussion of such resources, see the EMT EIR.
- 11 Potential impacts to energy and mineral resources created by the Project and proposed
- 12 Alternatives are based on a change from existing conditions. Significance criteria are
- used to assess the significance of the impacts, and whether MMs can be applied to
- 14 reduce the level of significance.
- 15 This document utilized information from the California Energy Commission (CEC), city
- of Goleta 2006 MND (06-MND-001), and Santa Barbara County 2001 MND (01-ND-34)
- and incorporates by reference the conclusions of the EMT EIR regarding area mineral
- and energy resources and the potential impacts on such resources associated with
- 19 operation of the EMT and summarize these where appropriate.

20 **4.14.1 Environmental Setting**

21 Regional Overview

- 22 California largely relies on electricity, natural gas, and petroleum-based fuels for its
- 23 energy. Table 4.14-1 summarizes the State's energy sources, their production, and
- 24 consumption in California.
- 25 Electricity production in California is largely fueled by natural gas, hydropower, and
- 26 nuclear energy. Other energy sources used to produce electricity include coal, solar
- and wind power, biomass/waste, geothermal energy, and oil (CEC 2005). Electricity
- 28 produced with natural gas as a fuel accounts for more than 37.7 percent (108,686)
- 29 Gigawatt-hours/year (GWh)/year) of all electricity produced in the State. Oil as fuel for
- 30 electricity production is being phased out in the State.

Table 4.14-1. California Energy Sources and Annual Consumption in 2005

Type of Energy Source	Produced In-State	Imported (from Other U.S. States or Foreign)	Total Consumed
Electricity (Gigawatt-hours)	225,788 (78.3%)	62,456 (21.7%)	288,245
Natural Gas (million cubic feet)	873 (15.0%)	5,011 (85.0%)	5,884
Oil to refineries (1,000 barrels)	266,052 (39.46%)	408,224 (60.55%)	674,276

Source: CEC 2006.

1

- 2 California is one of the top oil producing states in the nation, currently ranked fourth
- 3 behind Louisiana, Texas, and Alaska, respectively. In 2004, crude oil production
- 4 averaged 731,150 barrels per day, down approximately 4.7 percent from the 2003
- 5 production level. Oil production in the State has declined to levels not seen since 1943.
- 6 The CEC has forecasted as the population in California grows over the next few years,
- 7 electricity consumption will steadily increase at a rate of 1.84 percent annually,
- 8 depending on the energy resource and prediction method (CEC 1998, 1998 BASELINE
- 9 ENERGY OUTLOOK, CEC Staff Report, Appendix A: Electric Consumption Data).
- 10 Several minerals are mined in California; however, there are no known mineral
- resources in the Project area (City of Goleta 2004; Santa Barbara County 2004).

12 **4.14.2 Regulatory Setting**

- 13 Federal
- 14 Title 10 of the CFR addresses energy consumption and the establishment of the
- 15 Department of Energy. Issues addressed by Title 10 include:
- State energy programs;
- Energy conservation programs;
- Energy efficiency of industrial and commercial products;
- Alternative fueled vehicles;
- Power plant regulations;
- Department of Energy provisions; and
- Nuclear Regulatory Commission and Nuclear facilities.

- 1 Title 18 of the CFR addresses the Federal Energy Regulatory Commission (FERC),
- 2 which handles issues related to natural gas and oil transportation, provisions, and
- 3 tariffs.
- 4 Title 30 of the CFR establishes the MMS, which manages energy resources in the
- 5 Federal OCS.
- 6 State

17

18

20

21

22 23

24

25

27

28

- 7 The CEQA Guidelines Appendix F includes state guidelines for the discussion of energy
- 8 conservation. In addition to the CEQA, there are other acts and regulations that govern
- 9 energy production, utilization, conservation, and development of new energy sources.
- 10 The State of California adopted the Warren-Alquist Act in 1974 to encourage
- 11 conservation of non-renewable energy resources. The State Energy Resources
- 12 Conservation and Development Commission was created as a result of this Act. This
- 13 Act has been codified in the Public Resources Code Division 15, Energy Conservation
- 14 and Development. Other State statutes related to efficient utilization of energy
- 15 resources and energy conservation include:
- Financial Code Division 15.5,
 - § 32000 et seq. State Assistance Fund for Energy, California Business and Industrial Corporation;
- Government Code Title 2,
 - § 14450 et seq. Part 5, Chapter 4 California Transportation Research and Innovation Program;
 - § 15814.10 et seq. Part 10b, Chapter 2 Energy Conservation in Public Buildings;
 - § 15814.30 et seq. Part 10b, Chapter 2.8 Energy Efficiency in Public Buildings;
- Public Resources Code Division 3,
 - § 3800 et seq., Chapter 6 Disposition of Geothermal Revenues; Public Resources Code – Division 6;
- o § 6801 et seq. Part 2, Chapter 3 Oil and Gas and Mineral Leases; Public Resources Code – Division 16;

- o § 26000 et seq. California Alternative Energy Source and Advanced Transportation Authority Act;
- Public Resources Code Division 16.5,
- o § 26400 et seq. Energy and Resources Fund;
- Public Utilities Code Division 1,
- 7 o § 445 et seq. Part 1, Chapter 2.5 Public Utilities Commission Reimbursement Fees;
- 9 o § 701 et seq. Part 1, Chapter 4 Regulation of Public Utilities;
- o § 1001 et seq. Part 1, Chapter 5 Certificates of Public Convenience and Necessity;
- o § 2801 et seq. Part 2, Chapter 7 Private Energy Producers;
- Revenue and Taxation Code Division 2,
- o § 40001 et seq. Part 19 Energy Resources Surcharge Law;
- Vehicle Code Division 3,
- o § 5205.5 and 21655.9 et seg. Vehicle Code;
- Vehicle Code Division 12,
- o § 28110 et seq. Chapter 5, Article 16 Methanol or Ethanol Fueled Vehicles.
- 20 The California Department of Conservation is the primary agency with regard to mineral
- 21 resource protection. The Department is charged with conserving earth resources
- 22 (Public Resources Code § 600-690) and has five program divisions that address
- 23 mineral resource issues:
- Division of Mines and Geology;
- Division of Oil, Gas, and Geothermal Resources:
- Division of Land Resource Protection;
- Division of Recycling; and

- Office of Mine Reclamation.
- 2 The State Mining and Geology Board develops policy direction regarding the
- 3 development and conservation of mineral resources and reclamation of mined lands.
- 4 Other State agencies with statutory authority with regard to mineral resources issues
- 5 include:
- Coastal Commission (for land uses that could affect access to mineral resources within the Coastal Zone);
- SWRCB (as pertains to mineral resource water quality-related issues); and
- Energy Commission.
- 10 Local
- 11 The Santa Barbara County Energy Division regulates energy sector development (oil
- and gas development in particular) through the Local Coastal Plan. The Santa Barbara
- 13 County Energy Division is acting as a consultant to the city of Goleta for the proposed
- 14 Project. In the coastal zone, priority is given to coastal-dependent projects, including oil
- and gas projects that involve offshore oil and gas resources and facilities. In addition,
- 16 priority is also given to efficient harnessing of energy through recommendations
- 17 provided in the Energy Element of the Santa Barbara Comprehensive Plan.
- 18 The 1990 UCSB LRDP was established to identify the physical development necessary
- 19 to achieve the Campus' academic goals and provide a land use plan to guide the
- 20 development of future facilities. The LRDP is also intended to respond to the provisions
- of the California Coastal Act of 1976, with respect to the preparation of Long Range
- 22 Development Plans for Campuses in the Coastal Zone. The LRDP includes guidelines
- 23 for energy conservation on university property in § 30253, which states "New
- 24 development shall minimize energy consumption and vehicle miles traveled."
- 25 Additionally, the LRDP addresses energy conservation for new buildings development
- 26 and alternative transportation policies.

27 4.14.3 Significance Criteria

- 28 Under CEQA, a significant impact would occur if the Project would:
- Result in the loss of availability of a known energy or mineral resource (i.e., oil) that would be of value to the region and the residents of the State;

- Conflict with the adopted California energy conservation plans;
- Use non-renewable energy resources in a wasteful and inefficient manner;
- Result in a substantial increase in demand upon existing power or natural gas utilities; or
- Result in a need for new systems or supplies or substantial alterations to the existing power and natural gas utilities.

4.14.4 Impact Analysis and Mitigation

7

- 8 The proposed Project would produce crude oil for delivery to markets in the San
- 9 Francisco and Los Angeles areas. As discussed in Section 2.4.3, production from PRC
- 10 421 is expected to average no more than 700 BOPD in the first year, tapering off to
- 11 approximately 100 BOPD by year 12. If implemented, the proposed Project is
- anticipated to produce a total of 1.4 million barrels over the lifetime of the Project.
- 13 Operations at PRC 421 would use electricity to operate the drilling equipment and
- operational and safety controls. Electric power for the Project would be obtained from
- the existing Southern California Edison (SCE) electric grid system, via electricity lines
- that would be extended from the EOF. It is projected that the proposed Project would
- 17 have an electric power consumption rate of 80 kilowatts (kW).
- 18 Implementation of the Project would increase fossil fuel consumption from operation of
- 19 construction equipment and transport of the produced crude to markets in the Los
- 20 Angeles and San Francisco Bay areas. Currently, the EMT and operations of the barge
- Jovalan consume, on average, 72,000 to 190,000 gallons per year of diesel fuel. The
- range in the amount of fuel consumed per year is due to variations in the barge travel
- 23 destinations to either Los Angeles or San Francisco. Consumption during
- 24 transportation includes fuel use by the tug and assist vessels that propel the barge, by
- 25 the internal combustion engines on the barge Jovalan that are part of the vapor
- 26 recovery system, and the emergency response vessel that is present while the barge
- 27 Jovalan is loaded.
- 28 Impact EMR-1: Increase in Electricity Use
- 29 The proposed Project would cause a less than significant increase in electricity
- 30 use (Less than Significant, Class III).

1 <u>Impact Discussion</u>

- 2 The proposed Project would cause an increase in electricity use in the area due to
- 3 operation of electrical oil production equipment. The expected total electricity usage by
- 4 the Project facilities is approximately 80 kW, or 0.701 GWh/year. These numbers are
- 5 estimated assuming the equipment runs 24 hours a day and 365 days per year.
- 6 This increase in electricity use is negligible compared to the 2,750 GWh/year consumed
- 7 in Santa Barbara County or 250,310 GWh/year consumed within the State of California
- 8 (CEC 2000). Therefore, the Project would have adverse, but less than significant
- 9 impacts (Class III) on electrical energy resources.
- 10 <u>Mitigation Measures</u>
- 11 None required.
- 12 Impact EMR-2: Increase in Fossil Fuel Consumption
- 13 The proposed Project would increase the amount of fossil fuel consumption of
- 14 diesel fuel associated with barge Jovalan (Less than Significant, Class III).
- 15 Impact Discussion
- 16 The proposed Project would add at the most 4.7 barge trips per year to current levels.
- 17 This would correspond to an annual increase in fuel consumption of up to 20,222
- barrels. Given that California residents consume approximately 121.5 million barrels of
- distillate fuel each year (Energy Information Administration [EIA] 2006), the increase in
- 20 fuel consumption associated with the proposed Project would be less than significant.
- 21 <u>Mitigation Measures</u>
- 22 None required.
- 23 <u>Impacts Related to Future Transportation Options</u>
- 24 For the purposes of this energy resources analysis, it is assumed that Line 96 and the
- 25 EMT would be used to transport crude oil recovered from PRC 421 using the barge
- Jovalan to ship the oil to a Los Angeles or San Francisco Bay area refinery through
- 27 approximately the year 2013. However, as discussed earlier in this EIR (Sections 1.2.4,
- 28 2.4.2, and 3.3.6), several options exist for future transportation of oil from the Project,
- 29 each with different energy resources requirements. These include ongoing use of the
- 30 EMT through 2013, use of a pipeline to Las Flores Canyon, and trucking of oil to

- 1 Venoco's ROSF Facility 35 miles to the south and subsequent transport to Los Angeles
- 2 via pipeline. The potential energy resources impacts from transportation using the
- 3 existing EMT system are fully described above (see Impact EMR-2).
- 4 The timing and exact mode of transportation of produced oil after the initial five years of
- 5 Project operation are speculative at this point in time. However, transportation of crude
- 6 oil by use of a pipeline or trucking is not expected to result in significant impacts to
- 7 energy resources, as discussed in more detail in the alternatives analysis (Section
- 8 4.14.5). If neither transportation option is permitted or available by the cessation of
- 9 operation of the EMT, production from PRC 421 would be stranded, at least temporarily,
- until an alternative transportation mode is approved and becomes available.

Table 4.14-2. Summary of Energy and Mineral Resources Impacts and Mitigation Measures

Impact	Mitigation Measures	
EMR-1: Increase in Electricity Use	None required.	
EMR-2: Increase in Fossil Fuel Consumption	None required.	

4.14.5 Impacts of Alternatives

14 No Project Alternative

11

12

13

- 15 Under the No Project Alternative, there would be no production at PRC 421, and the
- 16 facilities would be decommissioned (under a separate evaluation). The No Project
- 17 Alternative would avoid the majority of impacts associated with production, transfer, and
- transportation of crude oil produced from PRC 421. However, the Proposed Project
- 19 would develop an energy resource that would otherwise remain unavailable under the
- 20 No Project Alternative.
- 21 Specifics on decommissioning would be addressed in an Abandonment and Restoration
- 22 Plan, and related impacts to energy resources would be evaluated in applicable
- 23 environmental documentation such as an MND or an EIR. Energy requirements for the
- 24 decommissioning of PRC 421 are unquantified and would be analyzed in a future
- 25 environmental document.

26 No Project Alternative with Pressure Testing

- 27 Under the No Project Alternative with Pressure Testing, temporary production facilities
- 28 and equipment would be installed at PRC 421 in order to allow for temporary oil
- 29 production to permit flow pressure testing of the existing 421-2 well and the associated
- 30 reservoir. Flow pressure testing would commence for a period of 6 to 12 months in

- 1 order to determine the potential of possible pressure increases in the reservoir upon
- 2 permanent closure of the well at PRC 421. After testing is completed,
- 3 recommendations would be provided on the ultimate disposition of the surf-zone
- 4 facilities. Given that oil would only be produced for 6 to 12 months, electricity and diesel
- 5 fuel consumption associated with this Alternative would be substantially less than the
- 6 consumption described for the proposed Project. Production of crude would also be
- 7 less. During the pressure testing period, 700 BOPD would be produced. Therefore,
- 8 impacts to energy and mineral resources under this Alternative would be less than the
- 9 proposed Project and less than significant.

10 Onshore Separation at the EOF

- 11 Under this Alternative, produced crude would be commingled with production from
- 12 Platform Holly and no separation activities would take place at Pier 421-2. Given that
- 13 the separation and processing systems at the EOF are not separate systems, under this
- 14 Alternative, crude produced from the Project would undergo separation and processing.
- 15 This could incrementally increase energy consumption for the Project; however, the
- same amount of diesel fuel would be used to transport the crude to market, therefore
- 17 the incremental increase in energy consumption associated with processing the crude
- 18 would not cause significant impacts to Energy and Mineral Resources. Further,
- 19 electricity would not be required to power Pier 421-2, and although some electricity
- 20 would be required to pump water to Platform Holly, it is expected that overall electricity
- 21 consumption would be similar to that of the proposed Project. Impacts would be less
- than significant.

28

- 23 Under this Alternative, Pier 421-1 would not be required for water re-injection and the
- 24 decommissioning of Pier 421-1 would be accelerated. The decommissioning would
- 25 require submittal of a decommissioning plan of Pier 421-1 to the CSLC and the city of
- 26 Goleta within approximately 6 months of approval of this Alternative. The potential
- 27 effects of decommissioning the facilities would be evaluated in a separate analysis.

Recommissioning Using Historic Production Methods

- 29 Under this Alternative, production would resume at PRC 421 in its historic configuration
- at the time prior to the wells being shut-in in 1994 while incorporating new technologies
- 31 to comply with current industrial and environmental standards. PRC 421 would utilize a
- 32 gas-fired internal combustion engine to power the pump at Pier 421-2. This would
- 33 reduce the electricity consumption of the Project, but increase the demand for diesel
- fuel; however, impacts would remain adverse, but less than significant.

1 Re-injection at Platform Holly

- 2 Under this Alternative, all aspects of the Project would remain the same with the
- 3 exception that Pier 421-1 would be decommissioned and produced water would be
- 4 transported via pipeline to Platform Holly and re-injected offshore rather than at 421-1.
- 5 Therefore, electricity would not be required to power Well 421-1; however, electricity
- 6 would be required to pump water to Platform Holly, which is located 1.9 miles southwest
- 7 of Coal Oil Point. The increase in distance would increase the amount of electricity
- 8 required to transport the water. All other impacts would be the same as described for
- 9 the proposed Project, which are less than significant.
- 10 Under this Alternative, Pier 421-1 would not be required for water re-injection and the
- 11 decommissioning of Pier 421-1 would be accelerated. The accelerated
- decommissioning would require submittal of a decommissioning plan for Pier 421-1 to
- 13 the CSLC and the city of Goleta within approximately 6 months of approval of this
- 14 Alternative. The decommissioning plan would be subject to further environmental
- 15 review.

16 <u>Transportation Sub-Alternative Options</u>

- 17 Pipeline Sub-Alternative
- 18 This method of crude oil transportation would involve the construction of an onshore 6-
- inch-diameter crude-oil pipeline from the EOF to the All-American Pipeline at Las Flores
- 20 Canyon. Project electricity consumption would increase due to pumping the crude oil to
- 21 Las Flores Canyon. However, the increase is not expected to be significant. Overall,
- 22 this method of crude oil transportation would not negatively affect energy resources.
- 23 Trucking Sub-Alternative
- 24 Under this sub-alternative, production would resume at PRC 421 as described in the
- 25 proposed project; however, recovered crude oil would be transported via tanker trucks
- 26 rather than by Barge Jovalan. The total one-way distance is approximately 35 miles.
- 27 Assuming an average fuel mileage of 6 miles per gallon, the total diesel fuel consumed
- 28 in a round trip would be approximately 12 gallons. The anticipated throughput from
- 29 PRC 421 would initially require 5 round trips per day to transport crude oil from the EOF
- 30 to the ROSF (see Section 3, Alternatives and Cumulative Projects, Table 3-2). This
- would result in an initial consumption by truck transport of 60 gallons of diesel fuel per
- day, and would decrease to one round trip and 12 gallons per day by the final years of
- 33 production. Consumption of diesel by the tug, assist and emergency vessels, and the

- 1 Barge Jovalan vapor recovery system would cease in relation to the Project. This
- 2 impact to energy resources would be adverse, but less than significant.

4.14.6 Cumulative Projects Impact Analysis

- 4 Because the Project is part of the energy resource production chain (crude oil
- 5 transportation to a location where fuels are produced), it supplies energy to other
- 6 projects that might be consumers of energy. Therefore, the project's cumulative energy
- 7 impact would be beneficial, because it would help to partially offset increases in energy
- 8 consumption.